skip to main content


Search for: All records

Creators/Authors contains: "Young, David P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metastable phases were formed in Mn1−xCoxNiGe (x=0.05 and 0.08) by annealing at 800 °C followed by rapid cooling, i.e., quenching, at ambient pressure (P=0) and under a pressure of P=3.5 GPa, and their phase transitions and associated magnetocaloric properties were investigated. The crystal cell volumes of the metastable phases decreased, and their structural transitions significantly shifted to lower temperatures relative to those of the slow-cooled compounds, with a greater reduction observed in the samples where the rapid cooling occurred under high pressures. The magnetic and structural transitions coupled to form a magnetostructural transition in the metastable phases, resulting in large magnetic entropy changes up to −79.6 J kg−1 K−1 (x=0.08) for a 7-T field change. The experimental results demonstrate thermal quenching and high-pressure annealing as alternative methods to create magnetostructural transitions, without modifying the compositions of the materials.

     
    more » « less
  2. null (Ed.)
    To facilitate research in dynamic spectrum access, 5G, vehicular networks, underground wireless communications, and radio frequency machine learning, a city-wide experimental testbed is developed to provide realistic radio environment, standardized experimental configurations, reusable datasets, and advanced computational resources. The testbed contains 5 cognitive radio sites, and covers 1.1 square miles across two campuses of the University of Nebraska-Lincoln and a public street in the city of Lincoln, Nebraska. Each site is equipped with a 4x4 MIMO software-defined radio transceiver with 20Gbps fronthaul connectivity. Additional cognitive radio transceivers with an underground 2x2 MIMO antenna are included in a site. High speed fronthaul network based on dedicated fiber connects the 5 sites to a cloud-based central unit for data processing and storage. The testbed provides researchers rich computational resources such as arrays of CPUs and GPUs at the cloud and FPGAs at both the edge and fronthaul network. Developed via the collaboration of the university, city, and industrial partners, this testbed will facilitate education and researches in academic and industrial communities. 
    more » « less
  3. null (Ed.)